

Presentation to TJPA CAC Caltrain Downtown Extension Project Update September 8, 2009 Transbay Transit Center

TJPA

Caltrain Downtown Extension Project

Agenda:

- Project Status
- Project Development
 - Operator Coordination
 - CAC Comments
- Questions

Project Status

- Term 2 of Preliminary Engineering
- 30% Engineering Design:
 - Configuration defined
 - Structure sizes known
 - Systems requirements identified
 - Cost estimate updated
- Notice to proceed July 1, 2008
- Scheduled Completion June 30, 2010

Project Status

- 2-track lead to DTX tunnel system
- Fourth/Townsend Underground Station
- 3 Track Tunnel on Townsend & 2nd Streets
- TTC with 3 Platforms and 6 Tracks
- At-grade Rail Car Storage within Caltrain yard
- Tail Tracks deferred until operationally required

- Program configuration defined in FEIS/FEIR
- The Federal Record of Decision (ROD) provides environmental clearances for the project contained in the FEIS/FEIR
- TJPA leeway to revise the project is limited
- Addenda/refinements must "not trigger the need for subsequent environmental review pursuant to Public Resources Code section 21166 and Section 15162 of CEQA Guidelines"
- Significant changes DTX alignment, train box location will jeopardize the ROD, and reopen the environmental process

Project Development

- Project Configuration
 - Platforms
 - Tail tracks
- Alignment
 - Curvature
 - HSR vehicle selection
 - Approach speeds
 - Capacity
- Tunneling Methods

Project Configuration

- Train box extended to Main Street to provide CAHSR tangent platform length
- Arrival of CHSRA tail tracks required for Caltrain
- Provides Caltrain operational flexibility/redundancy

Transbay Transit Center

- Can it be Improved?
- Constraints

- Pinch points
- Right of way
- Tangent platform
- East Bay extension
- Only minor adjustments to trackwork can be made

Alignment

- Cologne Central Station
 - City center location
 - Physical constraints
 - Used by ICE & TGV
 Thalys
 - 525 ft approach radius

Transbay Transit Center

Agency/System	Reference	Minimum Horizontal Radius Design Criteria
California High-Speed Rail	HSR Operating Criteria	152.4 m (500 ft)
European Railways Agency	Technical Specifications for Interoperability TSI L245	150 m (492 ft)
French Railways (TGV)	www.Trainweb.org	125 m (410 ft)
		Terminal Approach
German Railways	Standard DS 800.0110	150 m (492 ft)
		Revenue Service
Taiwan High Speed Rail	DB Int'l Report on DTX	200 m (656 ft)
JIR : Shinkansen	TJPA Mtg 27 Feb, 2006	Trainsets Suitable for CHSR Criteria 152.4 m (500 ft)

- Approach Speeds:

 Comparable with European Terminals
 Average 20-30 mph
 - on DTX alignment
 - Negligible impact on HSR travel time

- Capacity:
 - Not constrained by curved throat
 - Constraint is platform dwell time
 - CAHSR 30-40 min
 - Caltrain 18 min

- Coordination with CHSRA:
 - Investigated doubling TTC capacity to meet projected level of service
 - Agreed to maintain TTC and take overspill to 4th and King
 - Actual level of service to be determined

- Loop:
 - Caltrain dwell time reduces to 10 minutes
 - Increases Caltrain capacity
 - No reduction in
 CHSRA dwell time
 - No increased
 CHSRA capacity

dia Ma

ballei

П

CONTINE P

BIN.

021000

Transbay Transit Center

Cut and Cover Structures

- Install support of excavation walls
- Street decking
- Sequentially excavate and install internal bracing
- Cast permanent structure
- Backfill
- Street restoration

Transbay 7

Tunneling Methods

Transbay Transit Center

Transbay Transit Center

Transbay Transit Center

- Mined Tunnel
- Construction methods:
 - Tunnel Boring Machine
 - Stacked Drift
 - Sequential Excavation Method
- Evaluation Criteria:
 - Cost
 - Schedule
 - Risk

Transbay Transit Center

Transbay Transit Center

• Tunnel Boring Machine

- Three track alignment exceeds available right of way
- Can't accommodate track crossovers
- Short drive length high unit costs
- Learning curve under buildings

Transbay Transit Center

Stacked Drift Concept

77' (23.5 m) Wide

- Stacked Drift Concept
 - Slowest to construct
 - Most expensive to construct
 - High volumes of truck traffic during core excavation

N

- Sequential Excavation method
 - Almost 2 years faster to construct than stacked drift
 - \$80-million less expensive than stacked drift
 - Ground movements and building risk minimized
 - Limited opening size
 - Pipe canopy

Transbay Transit Center

Questions?

